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Fourier transforms are efficient and convenient for analyzing
local gravity data , but the accuracy of Fourier methods is re-
stricted by the flat-earth approximation. In this paper , the
theory of matched asymptotic (inner and outer) expansions is
used to develop improved flat-earth approximations , determine
regions of convergence , and match global (round—earth) and
local (flat-earth) gravity models. Accurate solutions in the
terms of Fourier transforms are given for the integrals of
Poisson , Stokes , and Vening Meinesz . The new theory provides
an error analysis of flat—earth algorithms and a systematic
procedure for improving their accuracy.,....
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1. INTRODUCTION

The ability of modern instrumentation to collect
t. ,local gravity data is quickly surpassing our capability to

process and interpret this data. For example , the NASA GEOS—3

satellite has already gathered 20 million measurements of

geoid height . Storage , analysis , and evaluation of this

data is a formidable task.

Fourier transforms are an efficient tool for analy-

zing such bulk data because space—domain convolut ions are re-
placed by frequency—domain multiplications . In principle ,
Fourier transforms can be used for almost all data processing

tasks: upward cont inuation , computing anomalies from undula—

tions , smoothing, least-squares collocation , etc. However ,
Fourier methods are based on the flat-earth approximation .
The accuracy of this approximat ion is therefore a key issue .
Flat earth theory is only valid on a local basis , but how

large is a “local” area? Do flat-earth methods always lead
to long—wavelengt h errors?

The purpose of this paper is to develop improved flat—

earth approximations and thereby enhance the usefulness of
Fourier methods in physical geodesy . These improvements are

accomplished by treating flat—earth theory as the leading term

of an asymptotic expansion.

+ cg2 + c2g3 
+ ... (1-1)

Here g~~ and g~~ are round- and flat-eart h gravity models.

The remaining terms on the right hand side are first- and

5 
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~iigher—order corrections to flat-earth theory . The small

parameter is inversely proportional to the earth s radius
and goes to zero in the limit of large earth radius . As will

be shown , the correction terms are relatively easy to calcu-
late using Fourier transforms . -Therefore, the flat-earth
approximation can be improved to any desired accuracy . In
practice , the first correction term is often adequate because
the parameter ~ is small (~ <<l). Loosely speaking, the para-
meter is small whenever the gravity signals of interest are
concentrated in wavelengths that are short relative to the
radius of the earth. This situation usually prevails because
90 percent of the energy (variance) in gravity anomalies is
contained in wavelengths shorter than 3000 km (Ref . 1).

For typical problems in geodesy , the (“inner ”) ex-
pansion (1) converges only in the vicinity of the point where
the flat—eart h approximation has been applied . However , this
nonuniformity can be corrected by forming an “outer ” expansion
that is valid at large distances . These expansions are com-
plement ary , share an overlapping region of convergence , and
can be combined (matched) to produce a uniformly-valid rep-
resentat ion of both the local and global field. In this paper ,
inner and outer expansions are derived and appropriate matching
procedures are given.

The approach is based on the theory of matched asyrnp—
totic expansions (Refs. 2, 3). This theory was originally
developed for boundary-layer problems in fluid mechanics but
has found applications in many other areas of applied math-
ematics . In the present context , flat-earth geodesy is the
first term of an inner expansion (Eq. 1—1).

The connection between physical geodesy and boundary-
layer theory is not accidental. Gravity anomalies are caused

~~~~~~ I • 
‘ •~~~~~‘ •
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chiefly by terrain and the associated isosta’tic compensation
at the Mohorovicic discont inuity. ~Iost of the energy in ter-
rain is concentrated in wavelengths that are short relative
to earth’s radius . Also , the earth’s crust is relat ively
thin compared to the earth’s radius . Therefore , a “gravity

• boundary layer” exists around the earth with a thickness of
a few hundred kilometers . Within this boundary layer the flat-
earth approximation and Fourier transforms are appropriate.
Outside the boundary layer , the curvature of the earth is im-

portant and spherical-earth formulas are needed . The theory

of matched asymptotic expansions provides a systematic method
of matching solutions that are valid inside and outside the
boundary layer .

In the next two sections the method of matched ex-
pansions is illustrated with examples . These examples pro-
vide an introduction to the rnetbod but are also important
in their own right because they give the appropriat e outer

expansions that are needed in later sections of the
paper .

1.1. DETERMINISTIC EXAMPLE - SHALLOW POINT MASS

The simplest illustration of the flat—earth approxi-

mation is a point mass buried at a depth D that is shallow
relative to the radius of the earth Re(D<<R e)~ 

The distur-

bance potential T is

T(r,~~) = ~[r
2 

+ (1_ ~ )
2 

- 2r(l-~) ~~~ ~~
-l/2 (1.1-1)

where

r = r ’/R e c = D/ Re (1.1—2)

U = km/R (1.1—3)

~~‘



Here r ’ and ~ are the radius and angle from the center of the

earth (Figure 1.1-1). Also , k and m are Newton s gravitational

constant and the mass of the disturbing body . The Legendre

expansion of Eq. 1.1-1 is

T(r ,q~) = ~~~~~~ n 0  
(1~~~~
Y

~~~~ 
~~n 

(cosi~~) (1.1-4 )

I.’

0

POINT ~L)
MASS

Figure 1.1—1 Notation for Buried Point Mass Example

Because the parameter C 15 small , the Legendre series Eq. 1.1-4

converges slowly and is inaccurate for numerical evaluations .

A more useful series is obtained by expanding in powers of the

parameter

— 

(r 2~~l-2~ cos~~)~~~
2 

r2:1_2r cosw J
(1.1—5)

S

• • • , - • .- - • 
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However , this series fails to converge in the vicinity of the
point mass (r<1+C and ~J < C ) ,  as can be seen from the ratio
test. In the terminology of perturbation theory , the asymp-
totic expansion (Eq . 1.1-5) is “nonuniform” and the perturbation

problem under consideration is “singular” rather than “regular” .
Equation 1.1—5 is referred to as an “outer” expansion hence a
subscript (T0) is used .

The standard remedy for such a nonuniform expansion

is to define “inner” variables that magnify the region of
nonuniformity. This leads to an inner expansion that is valid
in the vicinity of the point mass . In general , the appropriate
magnification is dictated by the characteristic dimension of
the nonuniformity. In this example the altitude (r-1) and
angle ~ both need to be stretched by the factor ~~~~. Thus, inner
variables (z,R) are defined as

z (r—1)/c and R = ~p / C  (1.1— 6)

The. inner expansion (Eq . 1.1-7) is obtained by substituting
Eq. 1.1—6 into Eq. 1.1—1

T (z R) — ~~~~~~~~ r1 ~. (1-z)R 2 ~1
C(l÷z)2 + R2~

112 L - 2 (1+z)2 .
~
- R2 

-

C 1.1—7)

The first term of the inner expansion is the fa~i1iar flat—

earth approximation. By computing the next term in the series

(Eq . 1.1—7) it can be shown that the series diverges for

or equivalently ~,>0(/~), where 0 is the usual order

symbol. Recall that the outer expansion (Eq . 1.1—5) fails for
:~<0(C). Thus , the inner and outer expansions share an over-

lapping region of convergence O(~~) < -
~~ 

O(/~). This overlap

implies that a uniformly valid ‘composite ” expansion can be
constructed from the inner and outer expansions.



___________________________________________________________________________ _____________ • - - •  -

In general a composite expansion can be constructed
from an n-term outer expansion and rn-term inner expansion.
where n and m are positive integers. For simplicity l-ter~
expansions will be used . First , the common part (cp) of the
inner and outer expansions is determined by writing the inner
expansion in outer variables and expanding for small C.

U / C  _________________op 
(z2 ~ R

2)~~
2 = 

((r—1)
2 2~ l/2 (1.1—8)

The same result is obtained by writing the 1—term outer ex-
pansion in inner variables and expanding for small C. Thus ,
the inner and outer expansions “match” in the overlapping
region of convergence. .4 uniformly valid composite 1-term
expansion can ue obtained by either the multiplicative or
additive rules (Ref . 4).

T0(r ,p ) = T1T0/cp (1.1—9)

T(r ,~~) = — cp (1.1—10)

The additive rule appears more frequently in textbooks (Refs.
2, 3), but the multiplicative rule is more convenient for
this example. The multiplicative rule gives

2 2 1/2
T (r •

~~) 
t (r— ~ ) ~~ ~~~~ (1.1—11)

C (r2+1_2rcos~ )
1/ 2 [(1+z)2+R2~~~

2

, 2 . 2 1/2
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

I Z  (1 1 192 1 9  •

~r —1— 2rcCs~~) 
! [ ( : — z y

At low altitudes , the outer expansion and common part cancel
each other in Eq. 1.1—11 so that the composite solution is

dominated by the inner term . At high altitudes , the inner

expans ion and common part cancel each other in Eq. 1.1-12
and the nuter term dominates.

_ _ _ _ _  • - -  - • - • - —- - - -~~ --~~~- • • - 
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Errors associated with the various expansions for the

potential field of the point mass are illustrated in Figure

1.1—2. The depth of the point mass is 319 km , corresponding

to ~ = 0.05. The mass of the disturbing body is adjusted so

that an undulation of 1 meter is generated directly over the

point mass . Figure 1.1-2 shows that the error in the 1-term

inner expansion (flat-earth approximation) is zero directly

over the po int mass (~ =0), rises to 1 cm at ~~4 degrees , and
rises to 1 cm again at ~=180 degrees. The 2-term inner expan-

sion is more accurate than the 1-term inner expansion in the

vicinity of the point mass (~~<3O degrees) but suffers the same

error growth at large angles. Conversely, the 1-term outer
expansion is relat ively accurate at large angles (‘p>30 degrees)
but inaccurate near the point mass. Thus , the inner and outer

expansions are complementary : they provide accuracy in the
“near—field” and “far—field” , i espectively .

g.3439g4
1.43

R //
2-TERM

• ,
./ INNER

z
C

1-TERM
COMP0~1TE

z

0 -
1-TE RM
OUTER

.43.2 __________________________________________
I I-

43 30 60 30 120 150 180
ANGLE ~i DEGREES

Figure 1.1-2 Errors in Various Expansions of the Undulation
Generated by a Shallow Point Mass (~~ 0.05, D
319 km). The Undulation Directly Over the Point
Mass is 1 Meter.
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A frequency interpretation of the inner and out9r ~x-
pans ions can also be made , as follows . The Legendre series
corresponding to Eq. 1.1-5 is

= 

~ ~~~ 
CnPn(CO5~~

) (1.1-13)
n=o r

Cn = (1_C)C - u (l-n~~- ) (1.1-14)

The expansion (Eq . 1.1—14) is accurate for low—order coefficients ,

but fails for n>1/C . In other words , the outer expansion (Eq .

1.1-5) provides only long-wavelengt h information. The inner ex-
pansion (Eq. 1.1—7) has the opposite property : it provides only

short—wavelengt h information . Together the two expansions des-

cribe the gravity field accurately over all wavelengths .

For compar ison , the errors in the various expansions
are illustrated in Figure 1.1-3 for a deeper point mass (C 0.20,

D=1270 kin). As before , the mass of the disturbing body is ad—
justed so that an undulation of 1 meter is generated directly

over the point mass. The error in the 1-term inner expansion
(flat-eart h approximation) rises to 4 cm at v=18 degrees and
again at ~~180 degrees . The 2-term inner expansion and 1-term
outer expansion provide improved accuracy in the near field
and far field , as already seen in Figure 1.1-2 .

At this point it is worthwhile to review the key ideas .
Five formulas have been given for the potential field of a point

mass: the exact formula (Eq . 1.1—1) and four expansions -

Legeridre (Eq . 1.1—4), outer (Eq . 1.1-5), inner (Eq . 1.1—7), and

composite (Eq . 1.1-11). The round—earth formulas (Eqs . 1.1-1 ,
1.1—4 and 1.1-5) are useful at high altitudes (r>l+~ ) but in-
accurate at low altitudes. (For example , when D10 km and
altitude = 5 km the exact formula and single—precision (7—place)
arithmetic yield only 1-place accuracy.) The inner expansion

12
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• 
‘ Figure 1.1—3 Errors in Various Expansions for the

Undulation Generated by a Shallow Point
Mass (C=O.20 , D 1270 kin). The undulation
Directly Over the Point Mass is 1 Meter.

(Eq . 1.1—7) is useful at low altitudes but fails to converge

at large angles (lL~>O(/~)). The composite expansion (Eq . 1.1—11)

enjoys the best properties of round— and flat-earth geodesy :

it is accurate everywhere (all altitudes and angles). Gener-

alizing from this example , the following lesson can be drawn .

Round— and flat-eart h formulas are useful for representing

long- and short-wavelength gravity disturbances , respectively.

Composite expansions provide a uniformly valid representation

over all wavelengths .

It should be emphasized that the usual flat—earth

approximation is often adequate. The accuracy improvements

13
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afforded by inner and composite expansions , such as Eqs . 1.1-7
and 1.1—11 , are typically rather small (less than one percent
in the example , Figure 1.1-2). However , the expansions are
still quite useful because they provide an error analysis of
the flat—earth approximat ion and a systematic method for im-
proving the approximation , if such improvements are needed .

The Fourier transform of the 1—term inner expansion
is defined as

~~~~~ ~~ 
z) = J f T1 (x ,y,z) ~~~~~~~~~~~~~~ (1.1-15)

Inasmuch as the potent ial field of the point mass is isotropic ,
the two—dimensional Fourier transform (Eq . 1.1-15) can be

written as a one—dimensional Hankel transform (Ref. 5).

= 2~~ f RT 1 (R,z) J0(~’R)dR (l.1-1~ )

= 2 ~r ( u / C  )i~ 
— 

R 
2 ~~~ 

J0(~
R)dR (1.1-l7)

-

2 2 2 (1.1—18)

This integral is given by Ref . 6, thus

• — 9~ru — (l+z)c~~~~ e (1.1—19)

Notice that the Fourier transform (Eu . 1.1—19) of the point
mass field is unbounded at zero frequency.

14
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1.2 STATISTICAL EXA~~LE - ATTENUATED WHITE NOISE ACP

The following model was recently proposed for the
• gravity disturbance potential autocovariance function (acf)

(Ref. 7)

• ~
3(2-c )3 ~2 [r

2 (l c)4]
= 

[1_ (1_c)4][r
2+(1_C )4 - 2(1_~ )

2 r cos 3/2 
(1.2-1)

• where

r = r1r2/ R~ = DIR e (1.2—2)

Here r1,r2, and ?~~ are the radii and angular separation of the

points being correlated. The model contains two free para-

meters (~
2

1 D) that are fitted to the data. The Legendre ex-

pansion of Eq. 1.2—1 is

£~ (2-~ )~ ~
2 

2 ~ (2n+l)[(
1
~~ ) ] P n(COS~ )

[1~(1_c) ] (1—i ) ~=o L
(l.2—3)

For modeling local (short wavelength) gravity distur-

bances , the characteristic distance D is small relat ive to

the radius of the earth. (Typically, D50 km and ~~O.0O8).

There fore , Eqs . 1.2-1 and 1.2—3 are ill-conditioned and slowly

converging, respectively. Expanding in powers of the parameter

C yields

— 
2~
2 
~
2(r2 1) ~~ 2(5r

2-1) - 2(1+3r2)r cos -
~~

3 2 ‘ 2 20 (r +1—2r ~~~~~ L (r —1)(r +1 — 2r cos ~~)

(1.2—4 )

15
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This (outer) expansion diverges when r<1+O(C) and ~<0(~~). .1s

in the earlier example , inner variables (z ,R) are defined by

Eq. 1.1—6. The inner expansion is

4(2~z) 3/2 ~~ 
z2(2+z)2 + 2(3;z2) R2 

•

+ R ] 2(2+z ) C (2+z) ~

(1.~~—5)

As before , the first term of the inner expansion is the famil-

iar flat-earth approximation. The inner expansion fails at
high altitudes (z>2/~ ) and large shift distances p>0 (1).

.4 composite expansion will now be formed from the 1-

term inner and outer expansions . The common part (cp) is

2~~
— 

4cz 
— 

4~ ~‘ ‘(r—1)— 2 2 3 / 2  — 

[(r_1)2,-~
,2] 3/2 

(1.2—6)

and the multiplicative composite expansion is

9 9 3/’) 9
‘ r—1 4(2+z)~~

C (r2~-1-2r cos~ )
312 2 

[(2~-z)
2÷R2]3’2

2 2  ‘) 2 2 3/22~ ~~(-r — 1) 2+z (z +~~ (1 ~‘ 8
(r2+1—2r cos4,)312 z 

~(2÷~ )
2 

+ a2]3 ’ 2 --

The Fourier transform of the 1-term inner expansion
is given by Eqs . 1.1-15 , 1.1-16 and 1.2-5 , thus

~1(~~, z)  = 3~~( 2+z )~~
2 . 

- 2 ~ 3/2 ~0 (~ R)dR

~ L (2~~~
) — R. 

~ (J.2—9)

i - 
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This integral is given in Ref. 6, hence

= Brc 2 e 2
~~~~ (1.2-10)

~Totice that unlike the previous example (Eq. 1.1—19), the

Fourier transform (Eq . 1.2—10) is bounded at zero frequency .

These transforms (Eqs. 1.1-19 and 1.2-10) are referred to in

later sections of the paper .

For simplicity , both the deterministic and statis-

tical examples are based on isotropic gravity fields . For

noniso-tropic fields , the appropriate transformation between

- . outer variables (r,~U ,ci.) and inner variables (x,y,z) is

x (~,/ ~~) sin ~ (1.2—11 )

y = (
~~/~~

) cos n ( 1 .2—12)

z = (r-1)/~ (1.2-13)

The origin of the inner coordinate system is on the surface of

the sphere at the center of the local field (e.g. , directly

above the point mass). The spherical angles ~ and ~ denote

the angular separation and azimuth of a point relative to this

origin (Figure 1.2—1).

17
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2. UPWARD CONTINUATION VIA MATCHED ASY~1PTOTIC E~~~AN SION S

Poisson~s integral for upward continuation above a
spherical earth is well known (Ref. 8).

2 27r iT , , I I

T(r ,9 ,X ) r 1 
~ 

f £~~ T°(e , X ) sine ~e dA (2—1)
4-li 0 0

~2 
= r2 + 1 — 2r cosiP (2—2)

I I

- 

. 
cos~p = cosecose + sinesine cos (X - X) (2—3)

If many evaluations of this integral are needed , it is more
efficient to use transforms :

T(r,9 ,X) = 
~ ~+1 ~n 

(~ -4)n o r

~~~~~~~~~~~~ 

2n+ 1 

~ 
T°(O , A )  P~ (cos~) sin8 de dA

(2—5)

However , the harmonic expansion (Eq. 2-4) converges too slowly

for modeling local (short—wavelength) gravity disturbances .
Local disturbances can be extrapolated aloft with the flat-
earth version of Poisson ’s integral .

T(x ,y, z) = 

~L :(xu)2÷(y v)2+z2~
3/2 (2-6)

Flat—earth upward continuation can also be done using Fourier
transforms (Appendix A).
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T ( x , y , z)  = 

~~2 ~: ~~~~~1’~~2 ’ ~~~~~~~~~~~ e l 2 ~~~~ ,~~~9

(2—7)

17 T0(x ,y) ~
i(-
~i

x+w 2y) dxdy (2-8)

However , the flat-earth formulas (Eqs. 2-6 to 2—8) are
only valid in the vicinity of the origin (small x , y and z).
Therefore , neither the round— nor flat-earth formulas provide
an accurate , uniformly—valid method for upward continuation
of local gravity disturbances .

In this section , an tnner expansion is derived for
upward continuation of local gravity data. The nonuniformity
of th i s  exp ansion at large d is tances  is corrected by m a t c h i n g
w i t h  an outer  expansion . The r e su l t i ng  composi te  expansion
is uniformly valid yet retains the computational advantages

of the  f l a t - ea r th formulas (Eqs . 2—6 cc 2 — 8 ) .  In o ther
words . the composite expansion makes it possible  to use Fourier
transforms for upward continuation and obtain results that
are accurate throughout the entire space (r ,3 , X) outside the
sphere . For simplicity, the derivat ion is carried out for the
special case of an isotropic gravity field. The nonisotropic
expansions are inferred.

The disturbance potential satisfies a Dirichiet problem
outside a sphere .

— 

~ 
Tr 

— —
~~~ T~~ ~~~~ T~ 0 ( 2 - 9 )

- — 
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T = T0(P;C ) r=1 (2—10)

T°(~~;~~) = T
0(~ +2~r ;C ) (2—11)

Subscripts denote differentiation (
~

T/
~

r T r). It is assumed
that the boundary potential T° depends on a small parameter

~~, and can be expanded in a power series

T0(’~;~~) — T~(R) # eT~ (R) + .. (2-12)

where ~~~~~ An example of such a power series is the shallow
point mass , where

~~~~~~~~~ ~ 
+ ...] (2 13)

according to Eq. 1.1—7 . In more practical situations such as
upward cont inuation of local gravity data , the dimension of

• the local field is D , C=D /Re~ 
and Eq. 2—12 truncates to a

single term (T~=0 , n 2 ,3 ,.. .). (Such an example is given in
the next section).

An asymptotic inner expansion is sought of the form

— T1(z ,R) + CT 2(z,R) + . .. (2—14)

where z~ (r—1)/~ . when Eq. 2—14 is substituted into Eq. 2-9 ,
the following sequence of boundary—value problems is ob-
tained.

First order problem

+ .
~~~ T1 + T1 0 0<z<~’ (2—15)

ER R zz

2~.

~~~~~~ —~

‘ 

r•1 
-— ~~ - -S
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~~~

= T~ ( R )  z-=O ( 2- 16 )

Second—or der  pr oblem

T -T + T2 = -2 z T - 2T ( 2 4 7 )
R zz zz z

T2 = 1(R) z~0 ( 2 18)

The solutions are foun d by Hankel transforms ( -Ref . 3 ) .

First order solut ion ( isotropic case)

T1(z,R) = 
e~~~ J0 (&~) 

~~ (2-19)
•0

- 

• . 

~~~~ 
(~~

) = 2~r f~ 
RT~~( 3 )  .j(~~~~) d~~ ( 2 20)

Second order solution (isotrooic case)

T2(z ,R) = — ~ (T1 z T 1 )

(
~~) e J 0~~~~) d~i (2 21)

= 2-r RT°(R) J (Ru) dR (2—22)
2 o

:f the boundary cond i t ion  is non:sotropic , th e  H anke l  t r an s—
forms are r eplaced by Four~ er transforms .

22 
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First order solution (nonisotropic case)

T1
(x ,y, z) = 

~~~~ 

~~~

( 2—23 )

f i  T~~(x , y )  ~~~~~~~~~~ dxdy (2-24)

Second order solution (nonisotropic case)

T2 (x , y , z) — ~ (T 1 +zT 1 )

— t ( ’ ~ x+~~9y)

~~~ 
~~ (~~1,~~2 )e~~

Z e 1 - dw
1
d~~2

(2—25)

i( w., X#w 9y)
= f f  T~~(x ,y) e - - dxdy (2 26 )

A comparison of Eqs . 2—7 and 2—23 reveals that the first term
of the inner expansion (Eq . 2-14) is the famil iar  f l a t - ea r th
approximation. This confirms that Eqs. 1.2-11 through 1.2-13
is an appropriate choice of inner variables .

The Fourier transform of the two—term inner expansion
is

~ 1
(-~i 11 w 2,z) T1(~~1~~ 2 ) e_’

~~~ [1 - ~~ 
(1_i

~i~)] (2-27)

In many cases , such as real data processing, the boundary con-
dition is only one term :
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T0 ( ’~ ,~~;~~) T~ (x , y )  ( 2 — 2 8 )

T~ (x , y )  = 0 n =2 , 3 , .. . (2-29)

This is a special case which simp1i~ ies the solutions (Eqs.

2—1 9 t o 2 -27) .  In part icular , the parameter disappears
from the so lu t ion ,  wh en the  solut ion is w r i t t e n  in dimension al
form . The dimensional variables are primed :

x = xD y = yD z zD ( 2 - 3 0 )

1 9  9

• 
= ~1/D 

~2 
= w 2 /D 

~ ~~1~~~~2 ( 2 — 3 1)

Th e solut ion (Eq . 2—27 ) becomes

~~ - 

~~e 
(l_.
~z )1  (2-32)

Equation 2—32 provides a very simple recipe for upward contin-

uation of potential field data. First , the data is Fourier trans-
formed to obtain the two—dimensional array ~~

0
(~~~1,~~~7 ) .  This

array is multiplied by the appropriate factors in Eq. 2-32

and inverse transformed to obtain the final results . In the

limit of large earth radius . Eq. 2-32 degenerates into the
usual flat-earth formula. Of course , the inner expansion
(Eq . 2—14) is only valid near the origin (small x ,y, z). An
outer expansion is needed to remove this limitation.

The fo reg o ing  ana lys i s  provides a method fo r  compu-
t i n g  the inner exp ansion us ing Hankel or Fourier  t r ans forms .
Direct integrals can also be used , as shown in Appendix B.
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However , the Fourier transforms are more efficient than

numerical integration.

• - The outer ex~ ansion will now be constructed . On an
outer scale , the local boundary condit ion Eq. 2-10 shrinks to a
point as the parameter ~ goes to zero . Therefore , the outer
expansion consist s of singularity functions that  sa t i sfy  t~ o
requirements: they must obey Laplace ’ s equation and match the
inner expansion. Examples of singularity func t ions  that
sat isfy Laplace ’ s equation have already been studied in the
previous sections , namely

T (r ,~~) = u (r2+ 1—2r cosw )~~~
”2 ( 2 — 3 3 )

and

T ( r ,~~) = 
u ( r 2-l)  

3/2  
(2-34 )

( r  +1—2r cosw )

To match the inner and outer expansions , the  1-term
inner exp ansion is wri t ten in outer variables and expanded
for  small

1 1 — - -- ~ r— 1~~’ —op ~~
—

~~~
- 

~~ ~~~~~ 

( ui ) e ~~~
“ ‘ - ‘ 

~J (
~~~f~

) d~ ( 2 — 3 5 )
‘0 0

A change of variable ( u=tu /~~) yie lds

op 
~~~~~ 

U ~~~~(~~u )  e 1
~~~ J ( - ~ju) du (2-36)

The long—wavelength properties of the  local f i el d  are paramount
as ~ goes to zero . If  the  t ransform is bounded at zero
frequency then Eq.  2—36 becomes

cp = 
~~~ ~~(o)~~ u e _ U j

0 (~ u)  du (2-37)
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= 
~~(O) (r—i)/ (r—l) 2 , 2 ~3/2 (2—33)

where

~~(O) = 2.ir f a  1(R) dR - (2—39)

From the earlier (statistical) example , one can see that Eq.
2—34 is the appropriate singularity for matching Eq. 2—38 with

-
~~ 

= j -~. ~~(O) (2—40)

The 1—term multiplicative composite expansion is

9 9 3/2
T
~

( r ,
~~
) ~~~~1) +’~~1 

3’9 £j-2 T1(z ,R) (2-41)
(r+ 1—2r cosU.’) ~~

• Here T1(z, R) denotes the first term of the inner expansion ,
namely Eq. 2—19 .

Returning now to Eq. 2-36 , suppose that the transform

is unbounded at zero frequency as in the first example

(Eq . 1.1—19). If the local field satisfies

lim ~ ~~
(
~~

) = .4 (2—42)
~~~

-. 0

where A is a constant, then Eq. 2-36 becomes

A~ •
~~~ — ‘r—l)u ‘-,cp =~~~~

-
~ e “ J0 (-iiu) du 

(_ ~~3)
0

= ~~ ((r—l) 2- 2~~~~’2 = ~~(z
2
~~S

2
)~~~

/2 (2—44)

LA - - 
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In this case , the appropriate singularity for the outer exDansioil
is Eq. 2—33 with

j .x A~ ,t (21T) (2—45)

— The composite expansion is

r 1)2#~
2

1
1,f2

T0(r ,~~) — 1/2 T1(z,R) (2-46)
(r +1—2r cos~j~)

Inasmuch as the local boundary condition E.q. 2-10 shrinks to a

point as the parameter goes to zero , the outer expansion

- 
. and common part are the same for both isotropic and noniso—

tropic local fields . Theref~ re , the appropriate composite

expansion for nonisotropic local fields is

T0(r~~i ,n) (i~ 1) +‘i, 
~ 3/2 ~~ 

T1(x,y, z) - (2—47)
(r +l—2r cos~,)

if the following integral is bounded and non—zero :

f [ T~(x,y) dxdy (2-48)

However if the integral (Eq. 2-48) is unbounded and

~~ [~~
7 T~(x ,y) e~~~1

W27) dxd7] = A ~2-49)

where A is a constant , then the composite expansion is

[ r—1~
2 ~ ,~

2i 1/2T0(r ,~~,~~) -— 

2 1/2 T1(x,y, z) (2—50 )
(r +1—2r cosi4 )
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The reader should keep in mind that the composite expansions ,
such as E q .  2-41 , are uniformly valid. Thus , upward contin-

uations of local fields can be done using flat-earth formulas
and when the flat-earth results are multiplied by the appro-

pr iat e  fac tor  in Eq. 2—4 1, they become valid fo r  all a l t i tudes
and angles (all r ,-~).

When processing data , the local field will usually
have bounded non—zero energy at zero frequency , i.e. , Eq. 2-48
is bounded and non—zero . Therefore , Eq. 2-47 is the appropriate
composite expansion . A notable exception to this rule is a
local field due to one or more point masses. In this case ,
Eq. 2—48 is unbounded and Eq. 2-50 is the proper expansion .

Both the disturbance potential and the disturbance
potential acf satisfy a Dirichlet problem outside a sphere
(Ref. 9). Therefore , expansions for upward continuation of
acfs can be inferred from the previous results. For upward

• continuation of the disturbanc e potential , (r , 
~ , -~ ) denote

normalized radius (rr ’/R e), angle , and azimuth. For
upward continuat ion of acfs , (-~J , ct) denote the angle and
azimuth between the points being correlated and

r = r1r2/R~ (2—51)

where r1 and r2 are the radii of the two points.
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3. LIMITED DATA EXAMPLE

The earlier examples are ins t ruct ive because they
provide a simple exposition of the ~ey notions :

• For purposes of modeling local gravity
disturbances , matched expansions and
Fourier transforms are more accurate and
eff ic ient  than spherical-earth formulas
and Legendre transforms .

• The first term of the inner expansion
- is the familiar flat-earth approximation .

Improved accuracy is obtained by compuc-
tag additional terms.

• The nonuniformity of the inner expansion
a-c large distances is corrected by outer
and composite expansions .

Also , the section on upward con t inuation shows ‘that the inner
expansion can be comput ed with Fourier transforms .

c’afortunat ely ,  ne i th er  of the  earlier examples
address the most co on type of local gravity fi e ld , namely,
the gravity f ie ld  over a l imited patch of the earth’ s surface .

A prototype problem is to compute the exterior potent ial  from
data within the patch.  The boundary condition is

I t ( x ,y )  — 1 < x ,y 1
( 3— 1)

0 otherwise

Presumably, data outside this region is continued upward by some
other means. For example , data outside the region might be

continued upward using spherical-earth (Legendre transform )

methods . A l t e rn a t i v e l y ,  if the ear th’ s surface is divided into
convenient  blocks of data , each block can be con t inued  upward

_ _ _ _ _ _ _ _  - -  ~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



using Four~~: methods . Thus , it is sufficient to consider the
problem of a s ingle  block . To s i mp l i fy  the  fo l l owing  example ,
a circular area is used , and the  boundary p o t e n t i a l  is con-
stant over the area.

t

T
0
(~~ ;~~ ) = (3—2)

0 ~U>s

The more realist ic case of a square pa tch  and nonuni form
potential can be treated by essentially the same methods . In
particular , the 1-term inner and composite expansions for the
general case are Eqs . 2—23 and 2-47. Inasmuch as the boundary
condition is isotropic , the exact solution Eq. 2— 1 can be
reduced to a single integral (Ref. 9)

T(r ,~~) = 
(r 2-l) T0(’~ ;~~) sinG E (v) -dQ (3-3)

0 (a—b ) /i~~

where

a = r2— l-2r cosi~cosG (3-4)

b = 2r sin’psin® (3—5 )

9 2E (v) /l—v sin x dx (3—6)Jo
= 2b/(a+b) (3-7)

Herq E denotes the complete elliptic integral of the second
kind . Su~st~t u t i n g  E q .  3—2 into 3—3 yields

~~:~~~) 
( r 2— 1 ’) : sin ~ E (v) d~ (3 8)

O (a—b ) ~a—o

- 
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The inner expansion will now be constructed . The
boundary condition Eq. 3—2 becomes 

—

(t  R< l
(R )  = (3—9)

(0 a>i

T ( R )  = 0 n=2 ,3 , . . . (3—10)

The first-order inner solution is Eq. 2-19 where

= 2~ rt I R J (wR) dR (3-11 )Jo
This integral is given by (Ref . 6):

= 2~r(t/~~) J (~.’) (3—12)

Therefore , the first-order inner solution is

T1 (z ,R) = t 
f e ~~ J (~ R) ~~~~ 

d~ (3-13)

This integral cannot be expressed in terms of elementary
functions . The second-order tnner solution is

T2(z,R) = — --
~~~ (T1 + z T1 ) 

(3—14)

Inasmuch as the transform is bounded at zero frequency, the
1—term outer expansion is Eq. 2—34 with

= .

~~~~

-
,. ~~(O) = £

2
t/4 (3—15 )

The 1-term composite expansion is Eq. 2—41.

31



-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- - -

For the special case ~=0, both the exact solution
(Eq . 3—8) and matched expansions can be evaluated in terms of
elementary functions. The exact solution (Eq . 3—8 ) becomes

T(r,o) = (~~~~~~~~~t 
[1 

- (r-l)/(r2+l-2 r cos~ )~~ 2i (3—10)

The first-order inner solution can be evaluated from either
the Hankel transform Eq. 3—13 or the direct integral Eq. 8—1:

1 9
T1 (z ,o) t (1 — z// 1~z) (~~—17)

The 1—term outer expansion Eq. 2-34 for ~=O is

2 r-~l(r ,o) — (
~ t / 4 )  (r—l) 2 (3 18)

and the 1—term multiplicative composite expansion is
t

r+l / 2T0 (r ,O) — —
~~ -— t (1 — z/ V 1~ z )  (3—19)

The second—order inner solution is

2 2 1
T
2 

(z ,O) — t ( z / 2 )  1 — z 3/9 (3—20)
L (l+z )

Notice that for a local gravity disturbance (~ <<1 ),
the exact solutions (Eqs. 3—8 and 3—16) are numerically ill—
conditioned . The spherical-earth formulas do not provide an
accurate , efficient method for upward continuation. However ,
the matched expansion (Eq. 3—19) is accurate , efficient , and
u n i f o r m ly  valid . Furthermore , t he  matched expansion can be
easily improved , if necessary , by adding an additional term

to the inner and/or outer expansion. If more accuracy is

needed in the near field , another term is added to the inner

expansion. Similarly, another term in the outer expansion

improves accuracy in the far field. 

-~~~~
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4. STOKES’ INTE GRAL VIA MATCHED ASYMPTOTIC E~~ AN SI0NS

Stokes ’ integral relates gravi ty  anomalies to the

disturbance potential on the sphere

H 2i ~
T(9,X) -

~~~~~~~ f f ~g (~~,c~) S(-~) sin~d~p drt (4—1)

where S is Stokes ’ function (Ref. 8). If many evaluat ions

of this integral are needed , a spherical harmonic transform

is useful . -

~~~

T(S ,X) R~ 5 ~-_—~~~ (4—2)
n 0

- 21T ~r , , , I

2~~I f f ~g(~~,X ) P
n
(COS

~
b) sinS d6 d1\ (4...3)

However , the harmonic series (Eq. 4—2) converges too 
slowly for

modeling local (short_wavelength) gravity anomalies
. The

disturbance potential due to local gravity anomalies 
can be

computed using the flat-earth version of Stokes
’ integral

(Ref. 10).

T(x,y) a ~~ f f  ~g(u,v) 

(~~~~)2~1/2 
(4-4)

The flat—earth computation can also be carried out us
ing Fourier

transforms (Appendix A).

T(x ,y) = 
~~~~ 

( l/ ~~)~~g ~~ l’~~2~
(4—5)

i g(x , y )  e 
i ( u ~1

x+’~~2 7)  dxdy (4—6)

_
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However , the flat-earth formulas (Eqs. 4—4 through 4—6) are only

valid in the vicinity of the origin (small x ,y). Therefore ,

neither the round— nor flat-earth formulas provide an accurate ,

uniformly—valid method for computing the disturbance potent ial

from local gravity anomalies. . -

In this section , inner , outer , and composite expansions

are derived for computing the disturbance potential from local

gravity anomalies. As in the previous section , the derivation

is carried out for the isotropic case and corresponding non—

isotropic results are inferred .

Stokes ’ integral is the solut ion to the differential

equation

~ 2T —f(r , -1 ) (4 7)

The function f (f=r ’~~g) satisfies a Dirichiet problem outside

the sphere

2 1 COt ~~ = ( 4 8)
rr r r 2 -

~~~~~ 2 ‘
~~r

fo (-i~;~~) = R~~~g r 1  (4—9)

f0(u;~~) f 0 ( -ij +27r ;~~) ( 4—10 )

As in a previous section asymptotic expansions are assumed

of the form Eq. 2-14 and 
-

f(r , ’l.’;z) — f 1(z , R) --
~~ f 2 (z , R) — . . . 

(4 11)

— f~~(H) ~~ ~~~~ 
(~L 12)
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The following sequence of boundary-value problems is obtained .

First-order problem

T1 — s f 1 (4— 13)
z

Second—order problem

T 2 - cf 2 
- zT1 - 2’~1 

- 

(4—14)

The solutions are readily found , inasmuch as the Dir ic ’nlet

problem was treated in a previous section.

First-order solution (isotropic case)

T1(z,R) 
~~ J !‘~ (~~) e~~~ J0(u~R) dw 

(4—15)

2.-~r Rf~ (R) J (~R) d.R (4—16)
- 

J o 0

Second-order solution (isotropic case)

T2(z,R) = - z’r1 + ~~~_ J (1/~~)!? (ui ) e J0(~ R) d~

4- -
~~~~ I ? ( w )  e~~~ J (~ R) cti~ (4—17)2 o

= 2~ f R f ~~(R) J (~ R) dB (4-18)

At zero altitude (z O, ral ) we have

T1( R )  = 

~~ 
J0(~ R) dw 

- 
(4-19)
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J0 (..~R)d~ — 

~~ ~~~
(
~~

) J~~(~~R~ d~
(4—20)

The corres~ouding fc~~ulas for the noniso-crop~ c case are:

First—order solution (nonisotropic case)

T1 (x,y) = 
~~2 L:~ 

( 1/~~) ?~(~~1,~~9) ~
_i(

~ 1 x4-w27) d~~ d~2
- (4—21)

= f f  f~ (x,y) ~
L 1~~~2

/) 
-~~dy (4-22)

Second--order solution (nonisotropic case)

T9(x ,y) 
~~~~~~~~~ :~; ( . / 2 ) 1~~l’~~2~ 

e
_i
~~ r.!~~

J27) 
~~~~~~4ff -~~~

- , — _ ( ~~~. x— ’.~ y) ~ -
-
~~ —

~~ ç1 ’~~ :9 (~~~1 , ~~~9 1 e 2

-

~~~ 
-

~~~ 0 -, 

~~~~~~
.- 

C4-23)

= -
. 

‘ f 2 (-x ,y) ~~~~~~ 
‘
~2~ d.xdy (4—24)

A comparison of Eqs . 4—5 and 4—21 reveals that the first term
of  the inner expansion (Eq . 2—14) is the familiar flat-earth
appr o x i m a t i o n .  This conf i rms  tha t  Eqs . 1.2-11 through  1 .2—13
is an appropriate choice of inner variables .

The outer expansion wil . now be constructed by a

matoning procedur as was done in a previous section. The

36
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1—term inner expansion (Eq . 4—15 ) is w r i t t e n  in outer var iables

and expanded for small ~~~~.

cp ~~ ~~~~~ !~~(~~) ~
_

~
( r _ l ) /

~ J0(~ u /~~) d~i (4-25)

A change of variable (u~~/~~) yields

—ocp = -p-- f 0 f1(~ u) e 
- J0(~ u) du (4—26)

Assuming that the integral 
-

~~(O) 2-~ (R  f~ (H) dR 
(4—27)

is bounded an4 non—zero , Eq. 4-26 becomes 
- 

‘1

cp = ~~~ ?~ ( 0 ) f  e
r_
~~~ J0(’~u) du 

(4—28)

= ~~ ~~(O)/ T r-l 2 2~ 1/2 (4-29)

Tb~ implied singularity in the outer expansion is 
Eq. 2-33

where
a 2f(Q)’(2ff) (4—30)

The composite expansion is

r i~
2 ,~,2 1/2

T (r,~~) 2 
- - - 

1’2 T1(z,R) (4-31)
c (r +1—2r cos~ )

A-c zero altitude (r= 1, v=O) we have

T (~~) 
-
~~~ 

T (H) (4—32)
C /~(1—cos~,)~~

2 1
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=(-v/2) csc(~~/2) T , (R) (4—33)

The corres~onding- non~sozrop~c result is

T0(’~,~~) = (~ /2)’ csc(-~/2) T1 (x ,y) (4—34)

The term (b/2)csc (’~/2) in Eq. 4—34 is a correction factor 
-

applied to the flat-eart h results. This factor is near unity
—— for example , when -~~lO and 60 degrees , the factor is 1.001
and 1.047, respectively. Equations 4—33 and 4—19 constitute a
uniformly—valid -solution to Stokes ’ problem . Local gravity
anomalies are processed using the flat—earth formulas ; when
the results are multiplied by the appropriate factor in Eq.
4—33 , they become valid for all ang1~s (

~~
) .

Returning now to -Eq. 4-26 , suppose that the integral
(Eq. 4—27) is zero . Then Eq. 4—26 becomes

= B : - .  — (r—l)’~ 5 (-au) du (4—35)

~3 3 (r—l)
= 

t (r—1)2 ÷,~2~ 3/2 
(4—36)

where

= ;~~ 
H2 

~~ (R) J , ( - ~ R) dR (4-37)

The implied singularity in the outer expansion is
Eq. 2—34 with

= (~~ /2) B (4—38)
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The composite expansion is
9 9 3/9

— 
t (r—l ) 4- 

3/ 2  ~~~ T~~(z , R )  ( 4 — 3 9 )
(r +1—2r cos~U)

At zero altitude (r= 1, z 0 )  we have

T0 (’~ ) — (~~~/ 8 )  csc 3(~ /2) T1( H )  (4 40)

- - The corresponding nonisotropic result is

T0 (~~, n )  — (qi 3/8) csc3(~ /2) T1
(x,y) (4—41)

Note that Eqs . 4—34 and 4—4 1 apply when the integral
(Eq . 4—27) is non—zero and zero , respectively.
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5. VENING—MEINESZ INTEGRAL VIA
.MATCI~ D ASYMPTOTIC E~~ANSI0NS

The Vening—Meinesz integral relates gravity anomalies
to ver t ica l  def lec t ions  (Ref . 8 ) .

~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~ 

~~~ sin~dwd~ (5—1)o o ~~i~~~j -

For dealing wi th  local ( sho r t—wave leng th )  g rav i ty  anomalies , th e
flat—earth version is convenient (Ref . 10).

1 ~g(u,v) y — v )  -

+ (y-v)2J 3’2 {~~~
aua

~ 
(n -~~)

The flat-earth computations can also be carried out with Fourier
transforms

.~~( x y )  - w
= 

4ff
2
G ~ -{~~~}~~~~~~

l’~~2 
e
_h

1~~~2
7)dw1d~2

(5—3)

where ~~ is given by Eq. 4—6. However, the flat-earth formulas
(Eqs. 5—2 and 5—3) are only valid in the vicinity of the

origin ( small x ,y ).

Asymptot ic  expansions tha t  enjoy  the best proper t ies
of the round— and flat-eart h formulas can be derived by dif-
ferentiation of the results in the previous section. In

_ _  - -



particular , the deflections in the x and y directions are

given by 
-

i -ST f~~~4

~
s x = 

~~~~~

i~~~ T -

= 

~ 5 
-
~
;-
~ 

(3—5)

An inner expansion is sought of the form

d (~p , ~~~;~~ ) — 5 (x , y )  # ~S (x , y )  ~~~~. . . (5—6)
x1 

x1

and similarly for a g. . P’-rom Eqs. 4-19 and 4-20 we have

~ (x ,y) 
— (x/R)~~fl ~~?0 (~~) J (-jR) d~ (5-7)

2ffGD ~ 
1 1

= ;
x~~~ ~~ i~~~-~~ 

j 1~ a~

~ J ~~~~~~~ J
1
(~~R) d~~

] 

(5-8)

The corresponding formulas for the nonisotropic case are

-
~~~~~ (x , y )  a I f  (w

1/~~ ) ‘i 1 ”~2~ 
~~~~~~~~~~~~~ d~9

47r GD -
~~~ 1

(5—9)

5 x (x , y )  = f J ~ (~~ /~
2) l l ’~ 2~2 4ff GD -~~
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The associated formulas for are obvious .

The outer expansion will now be constructed by the same
matching procedure used in the previous sections . The 1—term
inner expansion (-Eq. 5—7) is written in outer variables ~.nd
expanded for small

op = 
- / R )~ e ’

~~~~~~~ J1(~~ /~~) dw (5-11)

A change of variable (u=’~/~~) ~ields

op = 
(x/R~~ fu~~(~ u) ~~~~~~~~ J1(’~u) du (5-12)

Assuming tha t  Eq.  4—27 is bounded and non—zero ,

~~~~~~~ ( ( r _ l ) 2
’
~+ ,

~
2

i
3/2 (5-13)

The implied singularity in the outer expansion is

1 ’  — ‘ -b~ ..r ~in 3/2 (5—14)
(r -~-1—2r costp )

where

= 
( x / R ) ~~

3
~~~(Q)  

. 

(5-15)
2~GD 1

___  - - 
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The 1—term mult ipl icat ive composite expansion for  bo th  the
isotropic and nonisotropic oases is

~~~ (x ,y) — (~p
2/8) sin~ csc 3(~p/2)d (x ,y) (5—1.6)

Returning now to Eq. 5—12 , suppose that the
integral (sq . 4—27) is zero . Then Eq. 5—12 becomes

4
op = B j  u2e r

~~~~~J , (~pu) du (5—17)GD

= 
(x/R )~

4 3 3~ r — l ) ~ (5— 18)GD ~

The implied singularity for the outer expansion is

-3ursinw (r 2—l) (5—19)
(r ~1-2r cos~b)°’

where

C /R)~
3

B (5—20)

The 1—term multiplicative composite expansion for both the

• isotropic and nonisotropic oases is

5 (x,y) — (~~ /32) sini~ csc3(ii/2) 
~~ 

(x,y) (5—21)
‘ C 1

The foregoing expansions provide the vertical deflec-
Zion components 

~
5 x ’ 5 y~ 

in the local x ,y  coordinate system .
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A transformation is necessary to convert these components

into north and east defiections 
~~~~~~~~~ 

This transformation
depends on the latitude and longitude of the  origin of the

local coordinates , as well as the position (x,y) of the point

where the deflection is sought . Although tedious , such trans—
formations are elementary , and are not presented here.

- - 5
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6. D ISCRETE FOURI ER TRMISFORM S

The foregoing theory is suitable for analytical models
such as the earlier examples . For numerical models , the dis—

crete Fourier transform is more useful . The disturbance

potential T and its transform ~ are both treated as discrete

and periodic . The Fourier transform (Eq. 2-3) becomes

M/2—1 N12—1 2ffi (m k/M +uZ/N)

= 

k1s~~f / 2  2.=~’~/2 
T~~ e (6—1)

wh~re the integers k,Z ,m ,n are defined by

x = k Ax y = Z Ay (6—2)

= 

~~1 ~2 
= nc22 (6—3)

2ff 2ff

~1 ~~i~x ~
22 ~~

y (6—4)

For simplicity, M and N are assumed to be even integers . The

inverse transform for upward continuation (Eq. 2-7) becomes

M/2— 1 N/2— 1
T = -~~~~ c ~~ e ”

~~ ~
-2ffi(mk/~f + ni/N) 

6k2. NM ~~ 
C - ’-)

rn a_ M/ 2 na_N/2

where

a + -~~~~~ a m2
~’2~ + n2Q~ (6—6)

Fast Fourier transform algorithms are normally based on one—

sided transforms whereas Eqs . 6—1 and 6—6 are two—sided . The
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appropriate one—sided transforms can be obtained by shifting
the summation operators , inasmuch as both the potential field
Tkz and t rans form are per iodic .  The one-sided t ransforms
are

M—1 N—i
= 5’ 5’ T° ~ 

2 f f i ( m k / M  + r~i/N) (6—7)
mn — ~~ k2.k=o Zo

~f-l N-i
Tk2. = ~~T rn~o n~~ 

e —•.i~~Z 

~ 
—2~~j (mk/M n L / N )  ( 6 — 8 )

where

2 9
= p

~~~ 
‘i- q (6 9)

p = H — M ,’2~ — M / 2  ( 6—10)

q = — N /21—N /2 (6—11)

As an example of upward continuation using discrete

Fourier transforms , consider the potential field of a point
mass .

0 depth of point mass = 319 kin (6—12)
lx ly a 0/2 = 160 I~ (6—13)

z 319 1~~ (6—14)

Case 1: ii = N 32 (6—15)
Case 2: M = N = 64 (6 —16 )

As in the earlier example , the mass of the disturbing body is

selected so that an undulation of 1 meter is obtained directly

A ~~- -
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over the point mass . The point mass is located directly below
the center of the square grid. In each case , the potential
field of the point mass is computed at zero altitude . These
gridded values are cont inued aloft using the discrete Fourier
transforms (Eqs. 6—7 and 6—8). The results-are compared with the
exact flat-earth solution to assess the errors introduced by
the discrete transforms . Profiles of the errors are shown in
Fig. 6—1. For the smaller grid , the error is 2 to 3 cm , where-.
as the larger grid reduces the errors to 0.2 to 0.3 cm . The
larger grid is obviously a better approximation of the infinite—
length transforms (Eqs. 2—7 and 2—8).

- 
. Errors introduced by the flat-earth approximation and

- discrete Fourier transforms can be compared by examining Figs .
1.1-2 and 6— i.. Figure 1.1-2 shows that the flat-earth approxima-

tion introduces an error of ‘1 cm. Thus , the error introduced
by discrete transforms is larger than the flat-earth error for
the smaller grid (M=N=32) and smaller than the flat-earth
error for the larger grid (M=N=64). These results are not
surprising because the dimensions of the smaller and larger
grids are 5100 x 5100 km and 10,200 x 10,200 km , respectively,
whereas the earth’s mean radius is 6371 km.

It is interesting to compare the frequency content

of the errors introduced by the flat-earth approximation and

discrete transforms. The flat—earth error (Fig. 1.1-2) is
basically bimodal : a short-wavelength spike appears at
‘~)=4 degrees and a long—wavelength error appears at ~~180

degrees . The discrete transform error is also bimodal :

short- and long-wavelength errors arise from the discrete

spacing and finite length of the data. Of course, these

short-wavelength errors decay quickly as altitude increases .

--- --5
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Figure 6—1 Errors in discrete Fourier Transform
Upward Continuation of the Undulation
Generated by a Shallow Point Mass . -

The Undulation Directly Over the
Point Mass is 1 Meter . -

The point mass example is convenient for comparing
errors introduced by the flat—earth approximation and finite—
length transforms . However , this example is somewhat benign

because the potential field tapers smoothly to zero at the
edges of the finite grid. Real gravity fields do not taper
to zero at the edges and discontinuities appear in a periodic
extension. In such cases , the errors introduced by finite—

length transforms are more serious than portrayed in the point
mass example (Fig. 6—1 ). However techniques are available for
mitigating such “edge effects” (Refs. 11 , 14).

For readers who are unfamiliar with the fast Fourier
transform , some remarks about computer time are appropriate.

The computer t ime needed for this algorithm tends to be quite

minimal , and increases at a relatively modest rate (MN log MN)

as the dimension (MxN) of the grid increases (Ref. 12).

— -



The foregoing example problem required 5 seconds of computer
time on the IBM 370/158 digital computer , which included four
Fourier transforms (two for M N 3 2  and two for MN 64).
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7 . CONCL ZJ SIONS

Flat—earth formulas provide efficient descriptions
of local (short—wavelength) gravity disturbances. The accuracy
of this approximation can be improved by the method of matched
asymptotic expansions . The inner and outer expansions remove
the short- and long—wavelengt h errors of the flat-earth
formulas , respectively. The resulting composite expansions
provide uniformly valid descriptions of all wavelengths over
all altitudes and distances . The additional computations
needed to achieve these accuracy improvements are typically
insignificant because the inner exç~~ision is computed using
Fourier transforms and the outer expansion consists of simple
singularity functions such as Eqs . 2-33 and 2-34.

If discrete rather than continuous Fourier transforms
are used , additional errors arise due to the finite spacing
and length of the grid. However , these errors can be reduced
by using a finer grid spacing , larger grid , and “edge effect ’

compensation techniques.

- - 
_
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APPENDIX A
FOUR IER TP~.NSFORMS OF POISSON AND STO~~ S’ INTEGRALS

The flat-earth Poisson integral (Eq. 2-6) can be viewed

as a linear system with the boundary potential T
0 and exterior

potential T as the input and output . The impulse and fre-

quency response functions are

h(x,y) a 2 2 2 3/2  
(A—i)

2ff(x +y +~~~ )

2 2 2 3 2 
j(x # ~~2y)

~1’~ 2~ ~~~ H (x  #y +z 
~~ 

/ e - dxdy (.4-2)

Inasmuch as the impulse response is isotropic , the Fourier

transform (Eq . A—2 ) can be written as a Eankel transform

z f R(R 2 +z 2 ) 312 J
0
(~~R) dR 

(A—3)

where

2 2 2 -

~~ 

—

a2 a + ~2 (A—5)

Equation A—3 is the same transform that appears in the

statistical example (Eq. 1.2—9) hence

= e~~~ 
(A 6)

- which yields Eq. 2-7.

51

.. --.•-.—~-.-—-—_--—-—
_
—-—-—~._---—4._ -.~ --_:.- - -



T : — ------ —

~~

-----’

The flat—earth Stokes ’ integral (Eq . 4—4) can be ana :i-

zed similarly . The impu2.se and frequency response functions are

h (x ,y) = 2 1/2 (A-7)
2ir(x +y )

0 ~ 2 1 2 i(~ 1x+~i2y)E(~ 1,~~9) 
= 

~~ 
( x +y )~ 

/ e dxdy (A—8)

= 0 J J (wR ) dR (A-9)
0 ° -

This is the same transform that appears in the deterministic

example (Eq.. 1.1—17) hence

E(~~) = D/~ 
(A-b )

which y±elds Eq. 4—5.

_ _  
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APPEND IX B
DIRECT INTEGRAL FORM OF INNE R EXPANS I ONS

In the text , the inner expansions such as Eq. 2-14 are
expressed in terms of Hankel and Fourier transforms, for example ,
Eqs . 2-19, 2-20 and 2—23 , 2-24. These solutions can also be ex-
pressed as direct integrals. For example Eqs . 2-19 and 2-20 are
replaced by (Ref. 13).

-T0(u) E(3) udu2z I. -

a 
~~~ I - 

2 2 2 ~ l’~0 ((R—u) +~~ ) C ( R~-u) ~z ]  
/ -

w~ere E is the complete elliptic integral of the second kind
(Eq . 3—6) and

32 4Ru (B—2)
(R÷u)2+z2

Equation B—i effectively replaces two integrals by one . Sim—
ilarly, the second—order inner solution (Eqs . 2—21 and 2—22)

can be expressed as

T2 (z ,B) — (z/ 2 )  (T1+zT1 )

T°( u ) E ( p )  udu2 (B—3 )
6 ((R—u)2+z23 [(R+u)2+z21~~~

2

For the nonisotropic case , Eqs . 2—23 and 2—24 are replaced by
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T°(u ,v) dudv
T1(x ,y, z) = _.L~. f 2 2 3/ 2  

(B— 4)
—

~~ C ( x — u )  i-(y — v) ~z

Similarly, Eqs. 2—25 and 2—26 are replaced by

T9(x ,y,z) = — (z/2) (T1
+zT

1z
T~ (u,v) dudv

. _L 7 -
~ (B—B)

2-Tr

In the Stokes ’ solution , Eqs. 4—21 through 4—24 are

replaced by

f0(u ,v) dudv
T1(x ,y) = 

~~ 2 2 1/2 (B—6)
—

~~ ( ( x — u )  +( y- .v) I

and

T9(x,y) = ~~ f f  f~(u,v) in C (x-u)2#(y-v)23 dudv

~ f0(u ,v) dudv

~L ~(x-u)
2+ (y-v)2)~~~

2 
(3 7)

In order for the first integral in Eq. B—7 to be bounded , it

is required that

j f  f~(X ,7) dxdy = 0 (B—8)

The disadvantage of these direct integrals is that

numerical integrations are needed for each term of the inner

expansion. When Fourier transforms are used , numerical inte-
grations are avoided altogether .
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